LabBench Activity

Water Potential

The water potential of pure water in an open container is zero because there is no solute and the pressure in the container is zero. Adding solute lowers the water potential. When a solution is enclosed by a rigid cell wall, the movement of water into the cell will exert pressure on the cell wall. This increase in pressure within the cell will raise the water potential.

Look again at the equation for water potential:

Water potential (Ψ) = pressure potential (Ψp) + solute potential (Ψs)

There are two components to water potential: solute concentration and pressure. How do you think this fact affects the movement of water into and out of cells? For example, can two solutions that differ in their solute concentration be at equilibrium in terms of water movement? Can a solution with a molarity of 0.2 be in equilibrium with a solution with a molarity of 0.4?